38 research outputs found

    A W-Shaped Convolutional Network for Robust Crop and Weed Classification in Agriculture

    Get PDF
    Agricultural image and vision computing are significantly different from other object classification-based methods because two base classes in agriculture, crops and weeds, have many common traits. Efficient crop, weeds, and soil classification are required to perform autonomous (spraying, harvesting, etc.) activities in agricultural fields. In a three-class (crop-weed-background) agricultural classification scenario, it is usually easier to accurately classify the background class than the crop and weed classes because the background class appears significantly different feature-wise than the crop and weed classes. However, robustly distinguishing between the crop and weed classes is challenging because their appearance features generally look very similar. To address this problem, we propose a framework based on a convolutional W-shaped network with two encoder-decoder structures of different sizes. The first encoder-decoder structure differentiates between background and vegetation (crop and weed), and the second encoder-decoder structure learns discriminating features to classify crop and weed classes efficiently. The proposed W network is generalizable for different crop types. The effectiveness of the proposed network is demonstrated on two crop datasets – a tobacco dataset and a sesame dataset, both collected in this study and made available publicly online for use by the community – by evaluating and comparing the performance with existing related methods. The proposed method consistently outperforms existing related methods on both datasets

    Analysis of Human Gait Cycle with Body Equilibrium based on leg Orientation

    Get PDF
    Gait analysis identifies the posture during movement in order to provide the correct actions for a normal gait. A person\u27s gait may differ from others and can be recognized by specific patterns. Healthy individuals exhibit normal gait patterns, while lower limb amputees exhibit abnormal gait patterns. To better understand the pitfalls of gait, it is imperative to develop systems capable of capturing the gait patterns of healthy individuals. The main objective of this research was to introduce a new concept in gait analysis by computing the static and dynamic equilibrium in a real-world environment. A relationship was also presented among the parameters stated as static \& dynamic equilibrium, speed, and body states. A sensing unit was installed on the designed metal-based leg mounting assembly on the lateral side of the leg. An algorithm was proposed based on two variables: the position of the leg in space and the angle of the knee joint measured by an IMU sensor and a rotary encoder. It was acceptable to satisfy the static conditions when the body was in a fixed position and orientation, whether lying down or standing. While walking and running, the orientation is determined by the position and knee angle variables, which fulfill the dynamic condition. High speed reveals a rapid change in orientation, while slow speed reveals a slow change in orientation. The proposed encoder-based feedback system successfully determined the flexion at 47^\circ, extension at 153^\circ, and all seven gait cycle phases were recognized within this range of motion. Body equilibrium facilitates individuals when they are at risk of falling or slipping

    Chemo-Modulatory Potential of Flaxseed Oil as Natural Anticancer Therapeutic

    Get PDF
    Background: Cancer is a disease which is characterised by uncontrolled cell proliferation and development. Surgery, chemotherapy, radiotherapy, and photodynamic therapy are the most frequent cancer treatments. On the other hand, there are many negative health impacts of radiation and chemotherapy that limit the efficient use of these therapies.Methods: This scenario needs natural treatments that are cost-effective and has no adverse effects. Flaxseed oil can be used as a nutraceuticals for the management of cancer. The current research was aimed on the exploration of the flaxseed (Linum usitatissimum) oil for in vitro anticancer activity as a natural therapy for the management of cancer.Result: The flaxseed powder contained 36.6±0.04% oil contents with an average yield of 36.6±0.03% by using hexane as solvent for extraction. Moreover, the oil contained polyunsaturated fatty acid with omega 3 fatty acid (alpha-linolenic acid) as a dominant content of the oil. In-vitro anticancer activity of flaxseed oil was observed by Cytotoxic (3T3 cell line) and Prostate Cancer (PC3 cell line) indicating that the oil possessed anticancer activity which was dose-dependent.Conclusion: On the basis of results, it was concluded that the flaxseed or its oil can be used for the management of cancer as a natural therapy by using optimized dose levels for a different types of cancer

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Z-Number-Based Fuzzy Logic Approach for Mobile Robot Navigation

    No full text
    The primary objective of this study is to investigate the effects of mobile robot navigation using a fuzzy logic framework based on Z-numbers implemented within the Robot Operating System (ROS) Noetic. The methodology addresses uncertainty and imprecise information in robot navigation using extensive simulations performed using the TurtleBot3 robot in the ROS framework. Our unique approach enables the autonomous navigation of mobile robots in unknown environments, utilizing fuzzy rules with multiple inputs and outputs. The navigation strategy relies on the laser scan sensor, the Adaptive Monte Carlo Localization (AMCL) algorithm, and particle filter mapping, enabling real-time localization and mapping capabilities. Path planning incorporates local and global planners, while obstacle avoidance generates collision-free paths by dynamically detecting and circumventing obstacles in the robot&#x2019;s proximity. We employ Simultaneous Localization and Mapping (SLAM) techniques to estimate the robot&#x2019;s position and create a map of the environment. Our integration of these methods presents a promising solution for autonomous mobile robot navigation in real-world applications, thereby advancing the capabilities of robot systems in complex environments. Our results demonstrate the suitability and effectiveness of using a Z-number-based system in the navigation scenarios of mobile robots

    Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks

    No full text
    This research presents a brain-computer interface (BCI) framework for brain signal classification using deep learning (DL) and machine learning (ML) approaches on functional near-infrared spectroscopy (fNIRS) signals. fNIRS signals of motor execution for walking and rest tasks are acquired from the primary motor cortex in the brain&rsquo;s left hemisphere for nine subjects. DL algorithms, including convolutional neural networks (CNNs), long short-term memory (LSTM), and bidirectional LSTM (Bi-LSTM) are used to achieve average classification accuracies of 88.50%, 84.24%, and 85.13%, respectively. For comparison purposes, three conventional ML algorithms, support vector machine (SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA) are also used for classification, resulting in average classification accuracies of 73.91%, 74.24%, and 65.85%, respectively. This study successfully demonstrates that the enhanced performance of fNIRS-BCI can be achieved in terms of classification accuracy using DL approaches compared to conventional ML approaches. Furthermore, the control commands generated by these classifiers can be used to initiate and stop the gait cycle of the lower limb exoskeleton for gait rehabilitation

    LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI

    No full text
    Brain-computer interface (BCI) systems based on functional near-infrared spectroscopy (fNIRS) have been used as a way of facilitating communication between the brain and peripheral devices. The BCI provides an option to improve the walking pattern of people with poor walking dysfunction, by applying a rehabilitation process. A state-of-the-art step-wise BCI system includes data acquisition, pre-processing, channel selection, feature extraction, and classification. In fNIRS-based BCI (fNIRS-BCI), channel selection plays a vital role in enhancing the classification accuracy of the BCI problem. In this study, the concentration of blood oxygenation (HbO) in a resting state and in a walking state was used to decode the walking activity and the resting state of the subject, using channel selection by Least Absolute Shrinkage and Selection Operator (LASSO) homotopy-based sparse representation classification. The fNIRS signals of nine subjects were collected from the left hemisphere of the primary motor cortex. The subjects performed the task of walking on a treadmill for 10 s, followed by a 20 s rest. Appropriate filters were applied to the collected signals to remove motion artifacts and physiological noises. LASSO homotopy-based sparse representation was used to select the most significant channels, and then classification was performed to identify walking and resting states. For comparison, the statistical spatial features of mean, peak, variance, and skewness, and their combination, were used for classification. The classification results after channel selection were then compared with the classification based on the extracted features. The classifiers used for both methods were linear discrimination analysis (LDA), support vector machine (SVM), and logistic regression (LR). The study found that LASSO homotopy-based sparse representation classification successfully discriminated between the walking and resting states, with a better average classification accuracy (p < 0.016) of 91.32%. This research provides a step forward in improving the classification accuracy of fNIRS-BCI systems. The proposed methodology may also be used for rehabilitation purposes, such as controlling wheelchairs and prostheses, as well as an active rehabilitation training technique for patients with motor dysfunction
    corecore